Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Clin Transl Med ; 13(5): e1243, 2023 05.
Article in English | MEDLINE | ID: mdl-37132114

ABSTRACT

BACKGROUND: Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye. AIMS AND METHODS: This work summarizes the progress of current clinical trials and provides a brief overview of basic structures and photophysics of commonly used photoactivable proteins. We highlight recent achievements such as optogenetic control of the chimeric antigen receptor, CRISPR-Cas system, gene expression, and organelle dynamics. We discuss conceptual innovation and technical challenges faced by current optogenetic research. CONCLUSION: In doing so, we provide a framework that showcases ever-growing applications of optogenetics in biomedical research and may inform novel precise medicine strategies based on this enabling technology.


Subject(s)
Light , Optogenetics , Optogenetics/methods , CRISPR-Cas Systems
2.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38187623

ABSTRACT

Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene that plays a vital role in learning and memory. The recent discovery that Arc mediates the inter-neuronal RNA transfer implies its role in regulating neuronal functions across long distances. Arc protein has structural and functional properties similar to viral Group-specific antigen (Gag). By assembling into high-order, virus-like capsids, Arc mediates the intercellular RNA transfer. However, the exact secretion pathway through which Arc capsids maneuver cargos is unclear. Here, we identified that Arc capsids assemble and secrete through the endosomal-multivesicular body (MVB) pathway. Arc's endosomal entry is likely mediated by phosphatidylinositol-3-phosphate (PI3P). Indeed, reconstituted Arc protein preferably binds to PI3P. In mammalian cells, Arc forms puncta that colocalizes with FYVE, an endosomal PI3P marker, and competitive binding to PI3P via prolonged FYVE expression reduces the average number of Arc puncta per cell. Overexpression of MTMR1, a PI3P phosphatase, significantly reduces Arc capsid secretion. Arc capsids secrete through the endosomal-MVB axis as extracellular vesicles. Live-cell imaging shows that fluorescently labeled Arc primarily colocalizes Rab5 and CD63, early endosomal and MVB markers, respectively. Superresolution imaging resolves Arc accumulates within the intraluminal vesicles of MVB. CRISPR double knockout of RalA and RalB, crucial GTPases for MVB biogenesis and exocytosis, severely reduces Arc-mediated RNA transfer efficiency. These results suggest that, unlike the Human Immunodeficiency Virus Gag, which assembles on and bud off from the plasma membrane, Arc capsids assemble at the endocytic membranes of the endosomal-MVB pathway mediated by PI3P. Understanding Arc's secretion pathway helps gain insights into its role in intercellular cargo transfer and highlights the commonality and distinction of trafficking mechanisms between structurally resembled capsid proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...